Papers
Topics
Authors
Recent
2000 character limit reached

Statistical distribution of quantum entanglement for a random bipartite state (1006.4091v1)

Published 21 Jun 2010 in cond-mat.stat-mech and quant-ph

Abstract: We compute analytically the statistics of the Renyi and von Neumann entropies (standard measures of entanglement), for a random pure state in a large bipartite quantum system. The full probability distribution is computed by first mapping the problem to a random matrix model and then using a Coulomb gas method. We identify three different regimes in the entropy distribution, which correspond to two phase transitions in the associated Coulomb gas. The two critical points correspond to sudden changes in the shape of the Coulomb charge density: the appearance of an integrable singularity at the origin for the first critical point, and the detachement of the rightmost charge (largest eigenvalue) from the sea of the other charges at the second critical point. Analytical results are verified by Monte Carlo numerical simulations. A short account of some of these results appeared recently in Phys. Rev. Lett. {\bf 104}, 110501 (2010).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.