Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Generalized-ensemble simulations and cluster algorithms (1006.3866v1)

Published 19 Jun 2010 in cond-mat.stat-mech

Abstract: The importance-sampling Monte Carlo algorithm appears to be the universally optimal solution to the problem of sampling the state space of statistical mechanical systems according to the relative importance of configurations for the partition function or thermal averages of interest. While this is true in terms of its simplicity and universal applicability, the resulting approach suffers from the presence of temporal correlations of successive samples naturally implied by the Markov chain underlying the importance-sampling simulation. In many situations, these autocorrelations are moderate and can be easily accounted for by an appropriately adapted analysis of simulation data. They turn out to be a major hurdle, however, in the vicinity of phase transitions or for systems with complex free-energy landscapes. The critical slowing down close to continuous transitions is most efficiently reduced by the application of cluster algorithms, where they are available. For first-order transitions and disordered systems, on the other hand, macroscopic energy barriers need to be overcome to prevent dynamic ergodicity breaking. In this situation, generalized-ensemble techniques such as the multicanonical simulation method can effect impressive speedups, allowing to sample the full free-energy landscape. The Potts model features continuous as well as first-order phase transitions and is thus a prototypic example for studying phase transitions and new algorithmic approaches. I discuss the possibilities of bringing together cluster and generalized-ensemble methods to combine the benefits of both techniques. The resulting algorithm allows for the efficient estimation of the random-cluster partition function encoding the information of all Potts models, even with a non-integer number of states, for all temperatures in a single simulation run per system size.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.