Papers
Topics
Authors
Recent
2000 character limit reached

Quantum statistical correlations in thermal field theories: boundary effective theory (1006.3784v1)

Published 18 Jun 2010 in hep-ph and hep-th

Abstract: We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field $\phi_c$, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr\"{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field $\phi_c$, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.