2000 character limit reached
Symplectic quasi-states on the quadric surface and Lagrangian submanifolds
Published 12 Jun 2010 in math.SG | (1006.2501v1)
Abstract: The quantum homology of the monotone complex quadric surface splits into the sum of two fields. We outline a proof of the following statement: The unities of these fields give rise to distinct symplectic quasi-states defined by asymptotic spectral invariants. In fact, these quasi-states turn out to be "supported" on disjoint Lagrangian submanifolds. Our method involves a spectral sequence which starts at homology of the loop space of the 2-sphere and whose higher differentials are computed via symplectic field theory, in particular with the help of the Bourgeois-Oancea exact sequence.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.