Invariant tubular neighborhoods in infinite-dimensional Riemannian geometry, with applications to Yang-Mills theory (1006.0063v3)
Abstract: We present a new construction of tubular neighborhoods in (possibly infinite dimensional) Riemannian manifolds M, which allows us to show that if G is an arbitrary group acting isometrically on M, then every G-invariant submanifold with locally trivial normal bundle has a G-invariant total tubular neighborhood. We apply this result to the Morse strata of the Yang-Mills functional over a closed surface. The resulting neighborhoods play an important role in calculations of gauge-equivariant cohomology for moduli spaces of flat connections over non-orientable surfaces.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.