Papers
Topics
Authors
Recent
2000 character limit reached

Invariant tubular neighborhoods in infinite-dimensional Riemannian geometry, with applications to Yang-Mills theory (1006.0063v3)

Published 1 Jun 2010 in math.DG, math.AT, and math.SG

Abstract: We present a new construction of tubular neighborhoods in (possibly infinite dimensional) Riemannian manifolds M, which allows us to show that if G is an arbitrary group acting isometrically on M, then every G-invariant submanifold with locally trivial normal bundle has a G-invariant total tubular neighborhood. We apply this result to the Morse strata of the Yang-Mills functional over a closed surface. The resulting neighborhoods play an important role in calculations of gauge-equivariant cohomology for moduli spaces of flat connections over non-orientable surfaces.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.