The Lerch Zeta Function II. Analytic Continuation (1005.4967v2)
Abstract: This is the second of four papers that study algebraic and analytic structures associated with the Lerch zeta function. In this paper we analytically continue it as a function of three complex variables. We that it is well defined as a multivalued function on the manifold M equal to C3 with the hyperplanes corresponding to integer values of the two variables a and c removed. We show that it becomes single valued on the maximal abelian cover of M. We compute the monodromy functions describing the multivalued nature of this function on M, and determine various of their properties.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.