2000 character limit reached
Wrapping Brownian motion and heat kernels I: compact Lie groups (1005.4746v1)
Published 26 May 2010 in math.RT
Abstract: An important object of study in harmonic analysis is the heat equation. On a Euclidean space, the fundamental solution of the associated semigroup is known as the heat kernel, which is also the law of Brownian motion. Similar statements also hold in the case of a Lie group. By using the wrapping map of Dooley and Wildberger, we show how to wrap a Brownian motion to a compact Lie group from its Lie algebra (viewed as a Euclidean space) and find the heat kernel. This is achieved by considering It^o type stochastic differential equations and applying the Feynman-Ka\v{c} theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.