Papers
Topics
Authors
Recent
2000 character limit reached

Billion-atom Synchronous Parallel Kinetic Monte Carlo Simulations of Critical 3D Ising Systems (1005.4713v1)

Published 25 May 2010 in cond-mat.stat-mech, cond-mat.mtrl-sci, and cs.DS

Abstract: An extension of the synchronous parallel kinetic Monte Carlo (pkMC) algorithm developed by Martinez {\it et al} [{\it J.\ Comp.\ Phys.} {\bf 227} (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors time clocks current in a global sense. Boundary conflicts are rigorously solved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of the serial method, which confirms the statistical validity of the method. We have assessed the parallel efficiency of the method and find that our algorithm scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.