Globalization theorems for partial Hopf (co)actions, and some of their applications
Abstract: Partial actions of Hopf algebras can be considered as a generalization of partial actions of groups on algebras. Among important properties of partial Hopf actions, it is possible to prove the existence of enveloping actions, i.e., every partial Hopf action on a algebra A is induced by a Hopf action on a algebra B that contains A as a right ideal. This globalization theorem allows to extend several results from the theory of partial group actions to the Hopf algebraic setting. In this article, we prove a dual version of the globalization theorem: that every partial coaction of a Hopf algebra admits an enveloping coaction. We also show how this works on a series of examples which go beyond partial group actions. Finally, we explore some consequences of globalization theorems in order to present versions of the duality theorems of Cohen-Montgomery and Blattner-Montgomery for partial Hopf actions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.