Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 191 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Sparse Recovery with Orthogonal Matching Pursuit under RIP (1005.2249v2)

Published 13 May 2010 in cs.IT and math.IT

Abstract: This paper presents a new analysis for the orthogonal matching pursuit (OMP) algorithm. It is shown that if the restricted isometry property (RIP) is satisfied at sparsity level $O(\bar{k})$, then OMP can recover a $\bar{k}$-sparse signal in 2-norm. For compressed sensing applications, this result implies that in order to uniformly recover a $\bar{k}$-sparse signal in $\Reald$, only $O(\bar{k} \ln d)$ random projections are needed. This analysis improves earlier results on OMP that depend on stronger conditions such as mutual incoherence that can only be satisfied with $\Omega(\bar{k}2 \ln d)$ random projections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.