Sparse Recovery with Orthogonal Matching Pursuit under RIP (1005.2249v2)
Abstract: This paper presents a new analysis for the orthogonal matching pursuit (OMP) algorithm. It is shown that if the restricted isometry property (RIP) is satisfied at sparsity level $O(\bar{k})$, then OMP can recover a $\bar{k}$-sparse signal in 2-norm. For compressed sensing applications, this result implies that in order to uniformly recover a $\bar{k}$-sparse signal in $\Reald$, only $O(\bar{k} \ln d)$ random projections are needed. This analysis improves earlier results on OMP that depend on stronger conditions such as mutual incoherence that can only be satisfied with $\Omega(\bar{k}2 \ln d)$ random projections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.