Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Motivic bivariant characteristic classes (1005.1124v2)

Published 7 May 2010 in math.AG and math.AT

Abstract: The relative Grothendieck group $K_0(\m V/X)$ is the free abelian group generated by the isomorphism classes of complex algebraic varieties over $X$ modulo the "scissor relation". The motivic Hirzebruch class ${T_y}*: K_0(\m V /X) \to H{BM}(X) \otimes \bQ[y]$ is a unique natural transformation satisfying that for a nonsingular variety $X$ the value ${T_y}_([X \xrightarrow {\op {id}X} X])$ of the isomorphism class of the identity $X \xrightarrow {id_X} X$ is the Poincar\'e dual of the Hirzebruch cohomology class of the tangent bundle $TX$. It "unifies" the well-known three characteristic classes of singular varieties: MacPherson's Chern class, Baum-Fulton-MacPherson's Todd class (or Riemann-Roch) and Goresky-MacPherson's L-class or Cappell-Shaneson's L-class. In this paper we construct a bivariant relative Grothendieck group $\bK_0(\m V/X \to Y)$ so that it equals the original relative Grothendieck group $K_0(\m V/X)$ when $Y$ is a point. We also construct a unique Grothendieck transformation $T_y: \bK_0(\m V/X \to Y) \to \bH(X \to Y) \otimes \bQ[y]$ satisfying a certain normalization condition for a smooth morphism so that it equals the motivic Hirzebruch class ${T_y}: K_0(\m V /X) \to H_{BM}(X) \otimes \bQ[y]$ when $Y$ is a point. When $y =0$, $T_0: \bK_0(\m V/X \to Y) \to \bH(X \to Y) \otimes \bQ$ is a "motivic" lift of Fulton-MacPherson's bivariant Riemann-Roch $\ga_{td}{\op {FM}}:\bK_{alg}(X \to Y) \to \bH(X \to Y) \otimes \bQ$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube