The variety of reductions for a reductive symmetric pair (1005.0746v1)
Abstract: We define and study the variety of reductions for a reductive symmetric pair (G,theta), which is the natural compactification of the set of the Cartan subspaces of the symmetric pair. These varieties generalize the varieties of reductions for the Severi varieties studied by Iliev and Manivel, which are Fano varieties. We develop a theoretical basis to the study these varieties of reductions, and relate the geometry of these variety to some problems in representation theory. A very useful result is the rigidity of semi-simple elements in deformations of algebraic subalgebras of Lie algebras. We apply this theory to the study of other varieties of reductions in a companion paper, which yields two new Fano varieties.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.