2000 character limit reached
A quantitative version of Steinhaus' theorem for compact, connected, rank-one symmetric spaces (1005.0471v3)
Published 4 May 2010 in math.CO
Abstract: Let $d_1$, $d_2$, ... be a sequence of positive numbers that converges to zero. A generalization of Steinhaus' theorem due to Weil implies that, if a subset of a homogeneous Riemannian manifold has no pair of points at distances $d_1$, $d_2$, ... from each other, then it has to have measure zero. We present a quantitative version of this result for compact, connected, rank-one symmetric spaces, by showing how to choose distances so that the measure of a subset not containing pairs of points at these distances decays exponentially in the number of distances.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.