Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nearby Lagrangians with vanishing Maslov class are homotopy equivalent (1005.0358v3)

Published 3 May 2010 in math.SG and math.GT

Abstract: We prove that the inclusion of every closed exact Lagrangian with vanishing Maslov class in a cotangent bundle is a homotopy equivalence. We start by adapting an idea of Fukaya-Seidel-Smith to prove that such a Lagrangian is equivalent to the zero section in the Fukaya category with integral coefficients. We then study an extension of the Fukaya category in which Lagrangians equipped with local systems of arbitrary dimension are admitted as objects, and prove that this extension is generated, in the appropriate sense, by local systems over a cotangent fibre. Whenever the cotangent bundle is simply connected, this generation statement implies that the universal covering of every closed exact Lagrangian of vanishing Maslov index is trivial. Finally, we borrow ideas from coarse geometry to develop a Fukaya category associated to the universal cover, allowing us to prove the result in the general case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.