Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Développements asymptotiques combinés et points tournants d'équations différentielles singulièrement perturbées (1004.5254v1)

Published 29 Apr 2010 in math.DS

Abstract: We develop the theory of a new type of asymptotic expansions for functions of two variables the coefficients of which contain functions of one of the variables as well as functions of the quotient of these two variables. These combined asymptotic expansions (DAC) are particularly well suited for the description of solutions of singularly perturbed ordinary differential equations in the neighborhood of turning points. We describe the relations with the method of matched asymptotic expansions and with the classical composite asymptotic expansions used for boundary layers. We present a result of Ramis-Sibuya type that proves the existence of these DAC and provides Gevrey estimates. Three applications are given, two of which depend on Gevrey estimates for the DAC. In our article, we only apply the theory to scalar ordinary differential equations, but we are convinced that they will be very useful for systems of differential equations and other types of functional equations as well.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.