Elementary formulas for integer partitions (1004.4849v1)
Abstract: In this note we will give various exact formulas for functions on integer partitions including the functions $p(n)$ and $p(n,k)$ of the number of partitions of $n$ and the number of such partitions into exactly $k$ parts respectively. For instance, we shall prove that $$ p(n) = \sum_{d|n} \sum_{k=1}{d} \sum_{i_0 =1}{\lfloor d/k \rfloor} \sum_{i_1 =i_0}{\lfloor\frac{d- i_0}{k-1} \rfloor} \sum_{i_2 =i_1}{\lfloor\frac{d- i_0 - i_1}{k-2} \rfloor} ... \sum_{i_{k-3}=i_{k-4}}{\lfloor\frac{n- i_0 - i_1-i_2- ...-i_{k-4}}{3} \rfloor} \sum_{c|(d,i_0,i_1,i_2,...,i_{k-3})} \mu(c) (\lfloor \frac{d-i_0-i_1-i_2- ... i_{k-3}}{2c} \rfloor - \lfloor\frac{i_{k-3}-1}{c} \rfloor).$$ Our proofs are elementary.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.