Measures for a Transdimensional Multiverse (1004.4567v2)
Abstract: The multiverse/landscape paradigm that has emerged from eternal inflation and string theory, describes a large-scale multiverse populated by "pocket universes" which come in a huge variety of different types, including different dimensionalities. In order to make predictions in the multiverse, we need a probability measure. In $(3+1)d$ landscapes, the scale factor cutoff measure has been previously shown to have a number of attractive properties. Here we consider possible generalizations of this measure to a transdimensional multiverse. We find that a straightforward extension of scale factor cutoff to the transdimensional case gives a measure that strongly disfavors large amounts of slow-roll inflation and predicts low values for the density parameter $\Omega$, in conflict with observations. A suitable generalization, which retains all the good properties of the original measure, is the "volume factor" cutoff, which regularizes the infinite spacetime volume using cutoff surfaces of constant volume expansion factor.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.