Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spatially-Adaptive Reconstruction in Computed Tomography Based on Statistical Learning (1004.4373v1)

Published 25 Apr 2010 in cs.CV

Abstract: We propose a direct reconstruction algorithm for Computed Tomography, based on a local fusion of a few preliminary image estimates by means of a non-linear fusion rule. One such rule is based on a signal denoising technique which is spatially adaptive to the unknown local smoothness. Another, more powerful fusion rule, is based on a neural network trained off-line with a high-quality training set of images. Two types of linear reconstruction algorithms for the preliminary images are employed for two different reconstruction tasks. For an entire image reconstruction from full projection data, the proposed scheme uses a sequence of Filtered Back-Projection algorithms with a gradually growing cut-off frequency. To recover a Region Of Interest only from local projections, statistically-trained linear reconstruction algorithms are employed. Numerical experiments display the improvement in reconstruction quality when compared to linear reconstruction algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.