Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Spatially-Adaptive Reconstruction in Computed Tomography using Neural Networks (1311.7251v1)

Published 28 Nov 2013 in cs.CV, cs.LG, and cs.NE

Abstract: We propose a supervised machine learning approach for boosting existing signal and image recovery methods and demonstrate its efficacy on example of image reconstruction in computed tomography. Our technique is based on a local nonlinear fusion of several image estimates, all obtained by applying a chosen reconstruction algorithm with different values of its control parameters. Usually such output images have different bias/variance trade-off. The fusion of the images is performed by feed-forward neural network trained on a set of known examples. Numerical experiments show an improvement in reconstruction quality relatively to existing direct and iterative reconstruction methods.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.