2000 character limit reached
Volume comparison via boundary distances (1004.2505v1)
Published 14 Apr 2010 in math.DG and math.MG
Abstract: The main subject of this expository paper is a connection between Gromov's filling volumes and a boundary rigidity problem of determining a Riemannian metric in a compact domain by its boundary distance function. A fruitful approach is to represent Riemannian metrics by minimal surfaces in a Banach space and to prove rigidity by studying the equality case in a filling volume inequality. I discuss recent results obtained with this approach and related problems in Finsler geometry.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.