Papers
Topics
Authors
Recent
2000 character limit reached

Min- and Max-Entropy in Infinite Dimensions (1004.1386v2)

Published 8 Apr 2010 in quant-ph

Abstract: We consider an extension of the conditional min- and max-entropies to infinite-dimensional separable Hilbert spaces. We show that these satisfy characterizing properties known from the finite-dimensional case, and retain information-theoretic operational interpretations, e.g., the min-entropy as maximum achievable quantum correlation, and the max-entropy as decoupling accuracy. We furthermore generalize the smoothed versions of these entropies and prove an infinite-dimensional quantum asymptotic equipartition property. To facilitate these generalizations we show that the min- and max-entropy can be expressed in terms of convergent sequences of finite-dimensional min- and max-entropies, which provides a convenient technique to extend proofs from the finite to the infinite-dimensional setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.