The Kapustin-Li formula revisited (1004.0687v1)
Abstract: We provide a new perspective on the Kapustin-Li formula for the duality pairing on the morphism complexes in the matrix factorization category of an isolated hypersurface singularity. In our context, the formula arises as an explicit description of a local duality isomorphism, obtained by using the basic perturbation lemma and Grothendieck residues. The non-degeneracy of the pairing becomes apparent in this setting. Further, we show that the pairing lifts to a Calabi-Yau structure on the matrix factorization category. This allows us to define topological quantum field theories with matrix factorizations as boundary conditions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.