Papers
Topics
Authors
Recent
2000 character limit reached

Stein couplings for normal approximation (1003.6039v2)

Published 31 Mar 2010 in math.PR, math.ST, and stat.TH

Abstract: In this article we propose a general framework for normal approximation using Stein's method. We introduce the new concept of Stein couplings and we show that it lies at the heart of popular approaches such as the local approach, exchangeable pairs, size biasing and many other approaches. We prove several theorems with which normal approximation for the Wasserstein and Kolmogorov metrics becomes routine once a Stein coupling is found. To illustrate the versatility of our framework we give applications in Hoeffding's combinatorial central limit theorem, functionals in the classic occupancy scheme, neighbourhood statistics of point patterns with fixed number of points and functionals of the components of randomly chosen vertices of sub-critical Erdos-Renyi random graphs. In all these cases, we use new, non-standard couplings.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.