Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Almost sure convergence for stochastically biased random walks on trees (1003.5505v5)

Published 29 Mar 2010 in math.PR

Abstract: We are interested in the biased random walk on a supercritical Galton--Watson tree in the sense of Lyons, Pemantle and Peres, and study a phenomenon of slow movement. In order to observe such a slow movement, the bias needs to be random; the resulting random walk is then a tree-valued random walk in random environment. We investigate the recurrent case, and prove, under suitable general integrability assumptions, that upon the system's non-extinction, the maximal displacement of the walk in the first n steps, divided by (log n)3, converges almost surely to a known positive constant.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.