2000 character limit reached
Almost sure convergence for stochastically biased random walks on trees (1003.5505v5)
Published 29 Mar 2010 in math.PR
Abstract: We are interested in the biased random walk on a supercritical Galton--Watson tree in the sense of Lyons, Pemantle and Peres, and study a phenomenon of slow movement. In order to observe such a slow movement, the bias needs to be random; the resulting random walk is then a tree-valued random walk in random environment. We investigate the recurrent case, and prove, under suitable general integrability assumptions, that upon the system's non-extinction, the maximal displacement of the walk in the first n steps, divided by (log n)3, converges almost surely to a known positive constant.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.