From objects to diagrams for ranges of functors (1003.4850v2)
Abstract: Let A, B, S be categories, let F:A-->S and G:B-->S be functors. We assume that for "many" objects a in A, there exists an object b in B such that F(a) is isomorphic to G(b). We establish a general framework under which it is possible to transfer this statement to diagrams of A. These diagrams are all indexed by posets in which every principal ideal is a join-semilattice and the set of all upper bounds of any finite subset is a finitely generated upper subset. Various consequences follow, in particular: (1) The Gr\"atzer-Schmidt Theorem, which states that every algebraic lattice is isomorphic to the congruence lattice of some algebra, can be extended to finite poset-indexed diagrams of algebraic lattices and compactness-preserving complete join-homomorphisms (and no finiteness restriction if there are large enough cardinals). (2) In a host of situations, the relative critical point between two locally finite quasivarieties is either less than aleph omega or equal to infinity. (3) A lattice of cardinality aleph 1 may not have any congruence-permutable, congruence-preserving extension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.