Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Construction of Polynomial Lattice Rules with Small Gain Coefficients (1003.4785v2)

Published 25 Mar 2010 in math.NA

Abstract: In this paper we construct polynomial lattice rules which have, in some sense, small gain coefficients using a component-by-component approach. The gain coefficients, as introduced by Owen, indicate to what degree the method improves upon Monte Carlo. We show that the variance of an estimator based on a scrambled polynomial lattice rule constructed component-by-component decays at a rate of $N{-(2\alpha + 1) +\delta}$, for all $\delta >0$, assuming that the function under consideration has bounded fractional variation of order $\alpha$ and where $N$ denotes the number of quadrature points. An analogous result is obtained for Korobov polynomial lattice rules. It is also established that these rules are almost optimal for the function space considered in this paper. Furthermore, we discuss the implementation of the component-by-component approach and show how to reduce the computational cost associated with it. Finally, we present numerical results comparing scrambled polynomial lattice rules and scrambled digital nets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.