Fluctuations in random complex zeroes: Asymptotic normality revisited (1003.4251v1)
Abstract: By random complex zeroes we mean the zero set of a random entire function whose Taylor coefficients are independent complex-valued Gaussian variables, and the variance of the k-th coefficient is 1/k!. This zero set is distribution invariant with respect to isometries of the complex plane. Extending the previous results of Sodin and Tsirelson, we compute the variance of linear statistics of random complex zeroes, and find close to optimal conditions on a test-function that yield asymptotic normality of fluctuations of the corresponding linear statistics. We also provide examples of test-functions with abnormal fluctuations of linear statistics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.