Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A posteriori $L^\infty(L^2)$-error bounds in finite element approximation of the wave equation (1003.3641v2)

Published 18 Mar 2010 in math.NA

Abstract: We address the error control of Galerkin discretization (in space) of linear second order hyperbolic problems. More specifically, we derive a posteriori error bounds in the L\infty(L2)-norm for finite element methods for the linear wave equation, under minimal regularity assumptions. The theory is developed for both the space-discrete case, as well as for an implicit fully discrete scheme. The derivation of these bounds relies crucially on carefully constructed space- and time-reconstructions of the discrete numerical solutions, in conjunction with a technique introduced by Baker (1976, SIAM J. Numer. Anal., 13) in the context of a priori error analysis of Galerkin discretization of the wave problem in weaker-than-energy spatial norms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.