Papers
Topics
Authors
Recent
2000 character limit reached

New Cases of Universality Theorem for Gravitational Theories (1003.1617v3)

Published 8 Mar 2010 in gr-qc

Abstract: The "Universality Theorem" for gravity shows that f(R) theories (in their metric-affine formulation) in vacuum are dynamically equivalent to vacuum Einstein equations with suitable cosmological constants. This holds true for a generic (i.e. except sporadic degenerate cases) analytic function f(R) and standard gravity without cosmological constant is reproduced if f is the identity function (i.e. f(R)=R). The theorem is here extended introducing in dimension 4 a 1-parameter family of invariants R' inspired by the Barbero-Immirzi formulation of GR (which in the Euclidean sector includes also selfdual formulation). It will be proven that f(R') theories so defined are dynamically equivalent to the corresponding metric-affine f(R) theory. In particular for the function f(R)=R the standard equivalence between GR and Holst Lagrangian is obtained.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.