New Cases of Universality Theorem for Gravitational Theories (1003.1617v3)
Abstract: The "Universality Theorem" for gravity shows that f(R) theories (in their metric-affine formulation) in vacuum are dynamically equivalent to vacuum Einstein equations with suitable cosmological constants. This holds true for a generic (i.e. except sporadic degenerate cases) analytic function f(R) and standard gravity without cosmological constant is reproduced if f is the identity function (i.e. f(R)=R). The theorem is here extended introducing in dimension 4 a 1-parameter family of invariants R' inspired by the Barbero-Immirzi formulation of GR (which in the Euclidean sector includes also selfdual formulation). It will be proven that f(R') theories so defined are dynamically equivalent to the corresponding metric-affine f(R) theory. In particular for the function f(R)=R the standard equivalence between GR and Holst Lagrangian is obtained.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.