Global identifiability of linear structural equation models (1003.1146v3)
Abstract: Structural equation models are multivariate statistical models that are defined by specifying noisy functional relationships among random variables. We consider the classical case of linear relationships and additive Gaussian noise terms. We give a necessary and sufficient condition for global identifiability of the model in terms of a mixed graph encoding the linear structural equations and the correlation structure of the error terms. Global identifiability is understood to mean injectivity of the parametrization of the model and is fundamental in particular for applicability of standard statistical methodology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.