Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fast minimum variance wavefront reconstruction for extremely large telescopes (1003.0274v1)

Published 1 Mar 2010 in math-ph and math.MP

Abstract: We present a new algorithm, FRiM (FRactal Iterative Method), aiming at the reconstruction of the optical wavefront from measurements provided by a wavefront sensor. As our application is adaptive optics on extremely large telescopes, our algorithm was designed with speed and best quality in mind. The latter is achieved thanks to a regularization which enforces prior statistics. To solve the regularized problem, we use the conjugate gradient method which takes advantage of the sparsity of the wavefront sensor model matrix and avoids the storage and inversion of a huge matrix. The prior covariance matrix is however non-sparse and we derive a fractal approximation to the Karhunen-Loeve basis thanks to which the regularization by Kolmogorov statistics can be computed in O(N) operations, N being the number of phase samples to estimate. Finally, we propose an effective preconditioning which also scales as O(N) and yields the solution in 5-10 conjugate gradient iterations for any N. The resulting algorithm is therefore O(N). As an example, for a 128 x 128 Shack-Hartmann wavefront sensor, FRiM appears to be more than 100 times faster than the classical vector-matrix multiplication method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube