2000 character limit reached
Quantile estimation with adaptive importance sampling
Published 26 Feb 2010 in math.ST and stat.TH | (1002.4946v1)
Abstract: We introduce new quantile estimators with adaptive importance sampling. The adaptive estimators are based on weighted samples that are neither independent nor identically distributed. Using a new law of iterated logarithm for martingales, we prove the convergence of the adaptive quantile estimators for general distributions with nonunique quantiles thereby extending the work of Feldman and Tucker [Ann. Math. Statist. 37 (1996) 451--457]. We illustrate the algorithm with an example from credit portfolio risk analysis.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.