Papers
Topics
Authors
Recent
Search
2000 character limit reached

On dimension folding of matrix- or array-valued statistical objects

Published 25 Feb 2010 in math.ST and stat.TH | (1002.4789v1)

Abstract: We consider dimension reduction for regression or classification in which the predictors are matrix- or array-valued. This type of predictor arises when measurements are obtained for each combination of two or more underlying variables--for example, the voltage measured at different channels and times in electroencephalography data. For these applications, it is desirable to preserve the array structure of the reduced predictor (e.g., time versus channel), but this cannot be achieved within the conventional dimension reduction formulation. In this paper, we introduce a dimension reduction method, to be called dimension folding, for matrix- and array-valued predictors that preserves the array structure. In an application of dimension folding to an electroencephalography data set, we correctly classify 97 out of 122 subjects as alcoholic or nonalcoholic based on their electroencephalography in a cross-validation sample.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.