Papers
Topics
Authors
Recent
2000 character limit reached

On the trace of branching random walks (1002.2781v2)

Published 14 Feb 2010 in math.PR and math.GR

Abstract: We study branching random walks on Cayley graphs. A first result is that the trace of a transient branching random walk on a Cayley graph is a.s. transient for the simple random walk. In addition, it has a.s. critical percolation probability less than one and exponential volume growth. The proofs rely on the fact that the trace induces an invariant percolation on the family tree of the branching random walk. Furthermore, we prove that the trace is a.s. strongly recurrent for any (non-trivial) branching random walk. This follows from the observation that the trace, after appropriate biasing of the root, defines a unimodular measure. All results are stated in the more general context of branching random walks on unimodular random graphs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.