Papers
Topics
Authors
Recent
2000 character limit reached

A quantum cluster algebra of Kronecker type and the dual canonical basis (1002.2762v2)

Published 14 Feb 2010 in math.RT and math.QA

Abstract: The article concerns the dual of Lusztig's canonical basis of a subalgebra of the positive part U_q(n) of the universal enveloping algebra of a Kac-Moody Lie algebra of type A_1{(1)}. The examined subalgebra is associated with a terminal module M over the path algebra of the Kronecker quiver via an Weyl group element w of length four. Geiss-Leclerc-Schroeer attached to M a category C_M of nilpotent modules over the preprojective algebra of the Kronecker quiver together with an acyclic cluster algebra A(C_M). The dual semicanonical basis contains all cluster monomials. By construction, the cluster algebra A(C_M) is a subalgebra of the graded dual of the (non-quantized) universal enveloping algebra U(n). We transfer to the quantized setup. Following Lusztig we attach to w a subalgebra U_q+(w) of U_q(n). The subalgebra is generated by four elements that satisfy straightening relations; it degenerates to a commutative algebra in the classical limit q=1. The algebra U_q+(w) possesses four bases, a PBW basis, a canonical basis, and their duals. We prove recursions for dual canonical basis elements. The recursions imply that every cluster variable in A(C_M) is the specialization of the dual of an appropriate canonical basis element. Therefore, U_q+(w) is a quantum cluster algebra in the sense of Berenstein-Zelevinsky. Furthermore, we give explicit formulae for the quantized cluster variables and for expansions of products of dual canonical basis elements.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.