Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Superintegrability and higher order constants for quantum systems (1002.2665v1)

Published 13 Feb 2010 in math-ph and math.MP

Abstract: We refine a method for finding a canonical form for symmetry operators of arbitrary order for the Schroedinger eigenvalue equation on any 2D Riemannian manifold, real or complex, that admits a separation of variables in some orthogonal coordinate system. As examples we treat two potentials with parameter k (one of which is the Tremblay, Turbiner, and Winternitz system) that have been shown to be classically superintegrable for all rational numbers k. We apply the canonical operator method to give a constructive proof that each of these systems is also quantum superintegrable for all rational k. We also develop the classical analog of the quantum canonical form for a symmetry. It is clear that our methods will generalize to other Hamiltonian systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.