Papers
Topics
Authors
Recent
Search
2000 character limit reached

Kernel function and quantum algebras

Published 12 Feb 2010 in math.QA and math.CO | (1002.2485v1)

Abstract: We introduce an analogue $K_n(x,z;q,t)$ of the Cauchy-type kernel function for the Macdonald polynomials, being constructed in the tensor product of the ring of symmetric functions and the commutative algebra $\mathcal{A}$ over the degenerate $\mathbb{C} \mathbb{P}1$. We show that a certain restriction of $K_n(x,z;q,t)$ with respect to the variable $z$ is neatly described by the tableau sum formula of Macdonald polynomials. Next, we demonstrate that the integer level representation of the Ding-Iohara quantum algebra naturally produces the currents of the deformed $\mathcal{W}$ algebra. Then we remark that the $K_n(x,z;q,t)$ emerges in the highest-to-highest correlation function of the deformed $\mathcal{W}$ algebra.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.