Papers
Topics
Authors
Recent
2000 character limit reached

Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators (1001.5420v1)

Published 29 Jan 2010 in q-bio.NC, cs.SC, nlin.CD, and q-bio.QM

Abstract: Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.