Equivariant quantization of orbifolds (1001.4640v2)
Abstract: Equivariant quantization is a new theory that highlights the role of symmetries in the relationship between classical and quantum dynamical systems. These symmetries are also one of the reasons for the recent interest in quantization of singular spaces, orbifolds, stratified spaces... In this work, we prove existence of an equivariant quantization for orbifolds. Our construction combines an appropriate desingularization of any Riemannian orbifold by a foliated smooth manifold, with the foliated equivariant quantization that we built in \cite{PoRaWo}. Further, we suggest definitions of the common geometric objects on orbifolds, which capture the nature of these spaces and guarantee, together with the properties of the mentioned foliated resolution, the needed correspondences between singular objects of the orbifold and the respective foliated objects of its desingularization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.