Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cobordisms of global quotient orbifolds and an equivariant Pontrjagin-Thom construction (1811.08794v1)

Published 21 Nov 2018 in math.AT, math.DG, and math.GT

Abstract: We introduce an equivariant Pontrjagin-Thom construction which identifies equivariant cohomotopy classes with certain fixed point bordism classes. This provides a concrete geometric model for equivariant cohomotopy which works for any compact Lie group G. In the special case when G is finite or a torus, we show that our construction recovers the construction of Wasserman, providing a new perspective on equivariant bordism. We connect the results with bordisms of global quotient orbifolds, utilizing the machinery of Gepner-Henriques to describe bordisms of framed orbifolds in terms of equivariant cohomotopy. We also illustrate the utility of the theory by applying our results to M-theory, thus connecting with recent work of Huerta, Sati and Schreiber.

Summary

We haven't generated a summary for this paper yet.