2000 character limit reached
Identification of Logical Errors through Monte-Carlo Simulation (1001.4299v1)
Published 25 Jan 2010 in cs.SE
Abstract: The primary focus of Monte Carlo simulation is to identify and quantify risk related to uncertainty and variability in spreadsheet model inputs. The stress of Monte Carlo simulation often reveals logical errors in the underlying spreadsheet model that might be overlooked during day-to-day use or traditional "what-if" testing. This secondary benefit of simulation requires a trained eye to recognize warning signs of poor model construction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.