Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Stochastic evolution equations driven by Liouville fractional Brownian motion (1001.4013v3)

Published 22 Jan 2010 in math.PR and math.FA

Abstract: Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of L(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in the interval (0,1). For Hurst parameters in (0,1/2) we show that a function F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical Liouville fBm if and only if it is stochastically integrable with respect to an H-cylindrical fBm with the same Hurst parameter. As an application we show that second-order parabolic SPDEs on bounded domains in \mathbb{R}d, driven by space-time noise which is white in space and Liouville fractional in time with Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous both and space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.