Papers
Topics
Authors
Recent
2000 character limit reached

A Multivariate Variance Components Model for Analysis of Covariance in Designed Experiments

Published 18 Jan 2010 in stat.ME | (1001.3011v1)

Abstract: Traditional methods for covariate adjustment of treatment means in designed experiments are inherently conditional on the observed covariate values. In order to develop a coherent general methodology for analysis of covariance, we propose a multivariate variance components model for the joint distribution of the response and covariates. It is shown that, if the design is orthogonal with respect to (random) blocking factors, then appropriate adjustments to treatment means can be made using the univariate variance components model obtained by conditioning on the observed covariate values. However, it is revealed that some widely used models are incorrectly specified, leading to biased estimates and incorrect standard errors. The approach clarifies some issues that have been the source of ongoing confusion in the statistics literature.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.