Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Milstein scheme for SPDEs (1001.2751v4)

Published 15 Jan 2010 in math.NA, math.AP, and math.PR

Abstract: This article studies an infinite dimensional analog of Milstein's scheme for finite dimensional stochastic ordinary differential equations (SODEs). The Milstein scheme is known to be impressively efficient for SODEs which fulfill a certain commutativity type condition. This article introduces the infinite dimensional analog of this commutativity type condition and observes that a certain class of semilinear stochastic partial differential equation (SPDEs) with multiplicative trace class noise naturally fulfills the resulting infinite dimensional commutativity condition. In particular, a suitable infinite dimensional analog of Milstein's algorithm can be simulated efficiently for such SPDEs and requires less computational operations and random variables than previously considered algorithms for simulating such SPDEs. The analysis is supported by numerical results for a stochastic heat equation and stochastic reaction diffusion equations showing signifficant computational savings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.