Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rate of convergence of predictive distributions for dependent data (1001.2152v1)

Published 13 Jan 2010 in math.ST and stat.TH

Abstract: This paper deals with empirical processes of the type [C_n(B)=\sqrt{n}{\mu_n(B)-P(X_{n+1}\in B\mid X_1,...,X_n)},] where $(X_n)$ is a sequence of random variables and $\mu_n=(1/n)\sum_{i=1}n\delta_{X_i}$ the empirical measure. Conditions for $\sup_B|C_n(B)|$ to converge stably (in particular, in distribution) are given, where $B$ ranges over a suitable class of measurable sets. These conditions apply when $(X_n)$ is exchangeable or, more generally, conditionally identically distributed (in the sense of Berti et al. [Ann. Probab. 32 (2004) 2029--2052]). By such conditions, in some relevant situations, one obtains that $\sup_B|C_n(B)|\stackrel{P}{\to}0$ or even that $\sqrt{n}\sup_B|C_n(B)|$ converges a.s. Results of this type are useful in Bayesian statistics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube