Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the maximum entropy principle and the minimization of the Fisher information in Tsallis statistics (1001.1383v1)

Published 8 Jan 2010 in cond-mat.stat-mech

Abstract: We give a new proof of the theorems on the maximum entropy principle in Tsallis statistics. That is, we show that the $q$-canonical distribution attains the maximum value of the Tsallis entropy, subject to the constraint on the $q$-expectation value and the $q$-Gaussian distribution attains the maximum value of the Tsallis entropy, subject to the constraint on the $q$-variance, as applications of the nonnegativity of the Tsallis relative entropy, without using the Lagrange multipliers method. In addition, we define a $q$-Fisher information and then prove a $q$-Cram\'er-Rao inequality that the $q$-Gaussian distribution with special $q$-variances attains the minimum value of the $q$-Fisher information.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube