Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Rational group algebras of finite groups: from idempotents to units of integral group rings (1001.1236v1)

Published 8 Jan 2010 in math.RA and math.RT

Abstract: We give an explicit and character-free construction of a complete set of orthogonal primitive idempotents of a rational group algebra of a finite nilpotent group and a full description of the Wedderburn decomposition of such algebras. An immediate consequence is a well-known result of Roquette on the Schur indices of the simple components of group algebras of finite nilpotent groups. As an application, we obtain that the unit group of the integral group ring $\Z G$ of a finite nilpotent group $G$ has a subgroup of finite index that is generated by three nilpotent groups for which we have an explicit description of their generators. Another application is a new construction of free subgroups in the unit group. In all the constructions dealt with, pairs of subgroups $(H,K)$, called strong Shoda pairs, and explicit constructed central elements $e(G,H,K)$ play a crucial role. For arbitrary finite groups we prove that the primitive central idempotents of the rational group algebras are rational linear combinations of such $e(G,H,K)$, with $(H,K)$ strong Shoda pairs in subgroups of $G$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.