Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Casimir Energy of the Universe and New Regularization of Higher Dimensional Quantum Field Theories (1001.0222v1)

Published 1 Jan 2010 in hep-th

Abstract: Casimir energy is calculated for the 5D electromagnetism and 5D scalar theory in the {\it warped} geometry. It is compared with the flat case. A new regularization, called {\it sphere lattice regularization}, is taken. In the integration over the 5D space, we introduce two boundary curves (IR-surface and UV-surface) based on the {\it minimal area principle}. It is a {\it direct} realization of the geometrical approach to the {\it renormalization group}. The regularized configuration is {\it closed-string like}. We do {\it not} take the KK-expansion approach. Instead, the position/momentum propagator is exploited, combined with the {\it heat-kernel method}. All expressions are closed-form (not KK-expanded form). The {\it generalized} P/M propagators are introduced. We numerically evaluate $\La$(4D UV-cutoff), $\om$(5D bulk curvature, warp parameter) and $T$(extra space IR parameter) dependence of the Casimir energy. We present two {\it new ideas} in order to define the 5D QFT: 1) the summation (integral) region over the 5D space is {\it restricted} by two minimal surfaces (IR-surface, UV-surface) ; or 2) we introduce a {\it weight function} and require the dominant contribution, in the summation, is given by the {\it minimal surface}. Based on these, 5D Casimir energy is {\it finitely} obtained after the {\it proper renormalization procedure.} The {\it warp parameter} $\om$ suffers from the {\it renormalization effect}. The IR parameter $T$ does not. We examine the meaning of the weight function and finally reach a {\it new definition} of the Casimir energy where {\it the 4D momenta(or coordinates) are quantized} with the extra coordinate as the Euclidean time (inverse temperature). We examine the cosmological constant problem and present an answer at the end. Dirac's large number naturally appears.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.