Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributed delays stabilize negative feedback loops

Published 23 Oct 2009 in math.DS | (0910.4520v1)

Abstract: Linear scalar differential equations with distributed delays appear in the study of the local stability of nonlinear differential equations with feedback, which are common in biology and physics. Negative feedback loops tend to promote oscillation around steady states, and their stability depends on the particular shape of the delay distribution. Since in applications the mean delay is often the only reliable information available about the distribution, it is desirable to find conditions for stability that are independent from the shape of the distribution. We show here that the linear equation with distributed delays is asymptotically stable if the associated differential equation with a discrete delay of the same mean is asymptotically stable. Therefore, distributed delays stabilize negative feedback loops.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.