Papers
Topics
Authors
Recent
Search
2000 character limit reached

Estimating Entropy of Data Streams Using Compressed Counting

Published 8 Oct 2009 in cs.DS and cs.DB | (0910.1495v1)

Abstract: The Shannon entropy is a widely used summary statistic, for example, network traffic measurement, anomaly detection, neural computations, spike trains, etc. This study focuses on estimating Shannon entropy of data streams. It is known that Shannon entropy can be approximated by Reenyi entropy or Tsallis entropy, which are both functions of the p-th frequency moments and approach Shannon entropy as p->1. Compressed Counting (CC) is a new method for approximating the p-th frequency moments of data streams. Our contributions include: 1) We prove that Renyi entropy is (much) better than Tsallis entropy for approximating Shannon entropy. 2) We propose the optimal quantile estimator for CC, which considerably improves the previous estimators. 3) Our experiments demonstrate that CC is indeed highly effective approximating the moments and entropies. We also demonstrate the crucial importance of utilizing the variance-bias trade-off.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.